Receptor Type Protein Tyrosine Phosphatase-Kappa Mediates Cross-Talk between Transforming Growth Factor-Beta and Epidermal Growth Factor Receptor Signaling Pathways in Human Keratinocytes

نویسندگان

  • Yiru Xu
  • Dustin Baker
  • TaiHao Quan
  • Joseph J. Baldassare
  • John J. Voorhees
  • Gary J. Fisher
چکیده

Epidermal growth factor receptor (EGFR) signaling pathways promote human keratinocyte survival and proliferation. In contrast, transforming growth factor-beta (TGF-beta) signaling pathways are strongly anti-proliferative. Receptor type protein tyrosine phosphatase-kappa (RPTP-kappa) specifically dephosphorylates EGFR, thereby blocking EGFR-dependent signaling, and inhibiting proliferation. We report here that RPTP-kappa mediates functional integration of EGFR and TGF-beta signaling pathways in human keratinocytes. TGF-beta up-regulates RPTP-kappa mRNA and protein, in a dose and time dependent manner. Induction of RPTP-kappa by TGF-beta significantly decreases basal and EGF-stimulated EGFR tyrosine phosphorylation. shRNA-mediated reduction of TGF-beta-induced RPTP-kappa significantly attenuates the ability of TGF-beta to inhibit proliferation. RPTP-kappa induction is dependent on activation of transcription factors Smad3 and Smad4. Inhibition of TGF-beta receptor kinase completely prevents induction of RPTP-kappa. Chromatin immunoprecipitation assays reveal that TGF-beta stimulates Smad3 and Smad4 binding to RPTP-kappa gene promoter. Smad3/4 binding is localized to an 186-base pair region, which contains a consensus Smad3-binding element. These data describe a novel mechanism of cross-talk between EGFR and TGF-beta pathways, in which RPTP-kappa functions to integrate growth-promoting and growth-inhibiting signaling pathways.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cross-talk between epidermal growth factor receptor and protein kinase C during calcium-induced differentiation of keratinocytes.

The induction of epidermal differentiation by extracellular Ca2+ involves activation of both tyrosine kinase and protein kinase C (PKC) signaling cascades. To determine if the differentiation-dependent activation of tyrosine kinase signaling can influence the PKC pathway, we examined the tyrosine phosphorylation status of PKC isoforms in primary mouse keratinocytes stimulated to terminally diff...

متن کامل

Recombinant Expression of the Non-glycosylated Extracellular Domain of Human Transforming Growth Factorβ Type II Receptor Using the Baculovirus Expression System in Sf21 Insect Cells

Transforming growth factor beta (TGFβ1, β2, and β3) are 25 kDa disulfide-linked homodimers that regulate many aspects of cellular functions, consist of proliferation, differentiation, adhesion and extracellular matrix formation. TGFβs mediate their biological activities by binding of growth factor ligand to two related, functionally distinct, single-pass transmembrane receptor kinases, known as...

متن کامل

Frequent deregulations in the hedgehog signaling network and cross-talks with the epidermal growth factor receptor pathway involved in cancer progression and targeted therapies.

The hedgehog (Hh)/glioma-associated oncogene (GLI) signaling network is among the most important and fascinating signal transduction systems that provide critical functions in the regulation of many developmental and physiological processes. The coordinated spatiotemporal interplay of the Hh ligands and other growth factors is necessary for the stringent control of the behavior of diverse types...

متن کامل

Bergmann 20_10

Cross-talk between G-protein-coupled receptor (GPCR) and epidermal growth factor receptor (EGFR) signaling systems is established in a wide variety of normal and neoplastic cell types. Here, we show that proteinaseactivated receptor 1 (PAR1) mediates the tyrosine phosphorylation of EGFR in human renal carcinoma cells expressing PAR1 and PAR3 endogeneously. This GPCR-EGFR signal transduction pat...

متن کامل

Molecular Docking Based on Virtual Screening, Molecular Dynamics and Atoms in Molecules Studies to Identify the Potential Human Epidermal Receptor 2 Intracellular Domain Inhibitors

Human epidermal growth factor receptor 2 (HER2) is a member of the epidermal growth factor receptor family having tyrosine kinase activity. Overexpression of HER2 usually causes malignant transformation of cells and is responsible for the breast cancer. In this work, the virtual screening, molecular docking, quantum mechanics and molecular dynamics methods were employed to study protein–ligand ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 21  شماره 

صفحات  -

تاریخ انتشار 2010